Rearranging series of vectors on a small set

Paweł Klinga

University of Gdańsk

January 26, 2014

Paweł Klinga Rearranging series of vectors on a small set

Theorem (Riemann)

For any conditionally convergent series of reals $\sum_{n=1}^{\infty} a_n$ and any $a \in \mathbb{R}$ there exists a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} a_{\sigma(n)} = a$.

A B F A B F

Theorem (Riemann)

For any conditionally convergent series of reals $\sum_{n=1}^{\infty} a_n$ and any $a \in \mathbb{R}$ there exists a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} a_{\sigma(n)} = a$.

Theorem (Wilczyński)

For any conditionally convergent series of reals $\sum_{n=1}^{\infty} a_n$ and any $a \in \mathbb{R}$ there exists a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} a_{\sigma(n)} = a$ and $supp(\sigma) = \{n \in \mathbb{N} : \sigma(n) \neq n\} \in \mathcal{I}_d$, where

$$\mathcal{I}_d = \{A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap \{0, 1, \dots, n-1\}|}{n} = 0\}.$$

We say that an ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ has the (R) property if for any conditionally convergent series of reals $\sum_{n=1}^{\infty} a_n$ and any $a \in \mathbb{R}$ there exists a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} a_{\sigma(n)} = a$ and $supp(\sigma) \in \mathcal{I}$.

We say that an ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ has the (R) property if for any conditionally convergent series of reals $\sum_{n=1}^{\infty} a_n$ and any $a \in \mathbb{R}$ there exists a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} a_{\sigma(n)} = a$ and $supp(\sigma) \in \mathcal{I}$.

Theorem (Filipów, Szuca)

Let $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ be an ideal. The following are equivalent.

(i) \mathcal{I} has the (R) property.

(ii) \mathcal{I} cannot be extended to a summable ideal.

Let $(v_n)_n$ be a sequence of vectors in \mathbb{R}^m . $S(\sum_{n=1}^{\infty} v_n) = \{v \in \mathbb{R}^m : \exists \sigma : \mathbb{N} \to \mathbb{N} \text{ - permutation}$ $\sum_{n=1}^{\infty} v_{\sigma(n)} = v\}.$

白 と く ヨ と く ヨ と

Let
$$(v_n)_n$$
 be a sequence of vectors in \mathbb{R}^m .
 $S(\sum_{n=1}^{\infty} v_n) = \{v \in \mathbb{R}^m : \exists \sigma : \mathbb{N} \to \mathbb{N} \text{ - permutation} \\ \sum_{n=1}^{\infty} v_{\sigma(n)} = v\}.$

Definition

Let
$$(v_n)_n$$
 be a sequence of vectors in \mathbb{R}^m .
 $S_{\mathcal{I}}(\sum_{n=1}^{\infty} v_n) = \{v \in \mathbb{R}^m : \exists \sigma : \mathbb{N} \to \mathbb{N} \text{ - permutation}$
 $\sum_{n=1}^{\infty} v_{\sigma(n)} = v \text{ and } supp(\sigma) \in \mathcal{I}\}.$

э

□ ▶ ▲ 臣 ▶ ▲ 臣

Theorem (Lévy, Steinitz)

Let $(v_n)_n$ be a sequence of vectors in \mathbb{R}^m . The set $S(\sum_{n=1}^{\infty} v_n)$ is either empty or is of the form $s_0 + L$ for some vector s_0 and some linear subspace L.

Theorem (Lévy, Steinitz)

Let $(v_n)_n$ be a sequence of vectors in \mathbb{R}^m . The set $S(\sum_{n=1}^{\infty} v_n)$ is either empty or is of the form $s_0 + L$ for some vector s_0 and some linear subspace L.

Examples

$$S\left(\sum_{n=1}^{\infty}\left(\frac{(-1)^n}{n},\frac{(-1)^n}{n}\right)\right) = \{(x,y) : x = y\},\$$

Theorem (Lévy, Steinitz)

Let $(v_n)_n$ be a sequence of vectors in \mathbb{R}^m . The set $S(\sum_{n=1}^{\infty} v_n)$ is either empty or is of the form $s_0 + L$ for some vector s_0 and some linear subspace L.

Examples

$$S\left(\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{n}, \frac{(-1)^n}{n}\right)\right) = \{(x, y) : x = y\},$$
$$S\left(\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{n}, \frac{(-1)^n}{\sqrt{n}}\right)\right) = \mathbb{R}^2.$$

The form of the space $s_0 + L$ in the Lévy-Steinitz theorem can be expressed in a more precise way.

The form of the space $s_0 + L$ in the Lévy-Steinitz theorem can be expressed in a more precise way.

Let $F = \{w \in \mathbb{R}^m : \sum_{n=1}^{\infty} (w \circ v_n)^+ < \infty\}$, where \circ denotes the real inner product and $a^+ = \max\{a, 0\}$.

The form of the space $s_0 + L$ in the Lévy-Steinitz theorem can be expressed in a more precise way. Let $F = \{w \in \mathbb{R}^m : \sum_{n=1}^{\infty} (w \circ v_n)^+ < \infty\}$, where \circ denotes the real inner product and $a^+ = \max\{a, 0\}$.

Let
$$F^{\perp} = \{ v \in \mathbb{R}^m : \forall w \in F \ v \circ w = 0 \}.$$

The form of the space $s_0 + L$ in the Lévy-Steinitz theorem can be expressed in a more precise way. Let $F = \{w \in \mathbb{R}^m : \sum_{n=1}^{\infty} (w \circ v_n)^+ < \infty\}$, where \circ denotes the real inner product and $a^+ = \max\{a, 0\}$. Let $F^{\perp} = \{v \in \mathbb{R}^m : \forall w \in F \ v \circ w = 0\}$. Also let s_0 be any sum (rearranged or not) of the series. The form of the space $s_0 + L$ in the Lévy-Steinitz theorem can be expressed in a more precise way. Let $F = \{w \in \mathbb{R}^m : \sum_{n=1}^{\infty} (w \circ v_n)^+ < \infty\}$, where \circ denotes the real inner product and $a^+ = \max\{a, 0\}$. Let $F^{\perp} = \{v \in \mathbb{R}^m : \forall w \in F \ v \circ w = 0\}$. Also let s_0 be any sum (rearranged or not) of the series. Finally, if $S(\sum_{n=1}^{\infty} v_n)$ is not empty, then

$$S\left(\sum_{n=1}^{\infty}v_n\right)=s_0+F^{\perp}.$$

Theorem

Let $I\subseteq \mathbb{R}^2$ be such line on the plane and $\sum_{n=1}^\infty v_n$ such series in \mathbb{R}^2 that

$$S\left(\sum_{n=1}^{\infty}v_n\right)=l.$$

Then

$$S_{\mathcal{I}_d}\left(\sum_{n=1}^{\infty}v_n\right)=I.$$

Theorem

Let $I\subseteq \mathbb{R}^2$ be such line on the plane and $\sum_{n=1}^\infty v_n$ such series in \mathbb{R}^2 that

$$S\left(\sum_{n=1}^{\infty}v_n\right)=l.$$

Then

$$S_{\mathcal{I}_d}\left(\sum_{n=1}^{\infty}v_n\right)=I.$$

Alternatively, instead of \mathcal{I}_d you can put any ideal that has the (R) property.

We say that an ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ has the (R_2) property if for any conditionally convergent series of vectors on the plane $\sum_{n=1}^{\infty} v_n$ such that $S(\sum_{n=1}^{\infty} v_n) = \mathbb{R}^2$ and any $v \in \mathbb{R}^2$ there exists a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} v_{\sigma(n)} = v$ and $supp(\sigma) \in \mathcal{I}$.

We say that an ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ has the (R_2) property if for any conditionally convergent series of vectors on the plane $\sum_{n=1}^{\infty} v_n$ such that $S(\sum_{n=1}^{\infty} v_n) = \mathbb{R}^2$ and any $v \in \mathbb{R}^2$ there exists a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} v_{\sigma(n)} = v$ and $supp(\sigma) \in \mathcal{I}$.

Theorem (Folklore)

Let
$$(v_n)_n \subseteq \mathbb{R}^2$$
, $v_n \to 0$, $\forall w \neq 0$ $\sum_{n=1}^{\infty} (w \circ v_n)^+ = \infty$. Then
 $S\left(\sum_{n=1}^{\infty} v_n\right) = \mathbb{R}^2$.

Theorem

Let $(v_n)_n \subseteq \mathbb{R}^2$, $v_n \to 0$. The following are equivalent:

•
$$S\left(\sum_{n=1}^{\infty}v_n\right)=\mathbb{R}^2.$$

• The set $\{\sum_{n\in F} v_n : F \subseteq \mathbb{N}, |F| < \aleph_0\}$ is dense in \mathbb{R}^2 .

Theorem

Let $(v_n)_n \subseteq \mathbb{R}^2$, $v_n \to 0$. The following are equivalent:

•
$$S\left(\sum_{n=1}^{\infty}v_n\right)=\mathbb{R}^2.$$

• The set $\{\sum_{n\in F} v_n : F \subseteq \mathbb{N}, |F| < \aleph_0\}$ is dense in \mathbb{R}^2 .

Theorem

Let $S(\sum_{n=1}^{\infty} v_n) = \mathbb{R}^2$. There exists a set $A \subseteq \mathbb{N}$ such that both series $\sum_{n \in A} v_n$ and $\sum_{n \in \mathbb{N} \setminus A} v_n$ are conditionally convergent and $S(\sum_{n \in A} v_n) = \mathbb{R}^2$, $S(\sum_{n \in \mathbb{N} \setminus A} v_n) = \mathbb{R}^2$.

Theorem

Let $(v_n)_n \subseteq \mathbb{R}^2$, $v_n \to 0$. The following are equivalent:

•
$$S\left(\sum_{n=1}^{\infty}v_n\right)=\mathbb{R}^2.$$

• The set
$$\{\sum_{n\in F} v_n : F \subseteq \mathbb{N}, |F| < \aleph_0\}$$
 is dense in \mathbb{R}^2

Theorem

Let $S\left(\sum_{n=1}^{\infty} v_n\right) = \mathbb{R}^2$. There exists a set $A \subseteq \mathbb{N}$ such that both series $\sum_{n \in A} v_n$ and $\sum_{n \in \mathbb{N} \setminus A} v_n$ are conditionally convergent and $S\left(\sum_{n \in A} v_n\right) = \mathbb{R}^2$, $S\left(\sum_{n \in \mathbb{N} \setminus A} v_n\right) = \mathbb{R}^2$.

Corollary

If $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ is a maximal ideal, then it has the (R_2) property.

Remark

If $\sum_{n=1}^{\infty} a_n$ is a series of reals such that $a_n \to 0$, $\sum_{n=1}^{\infty} a_n^+ = \infty$ and $\sum_{n=1}^{\infty} a_n^- = -\infty$ then there exists a subsequence $(n_k)_k$ such that $\sum_{k=1}^{\infty} a_{n_k}$ is conditionally convergent.

Remark

If $\sum_{n=1}^{\infty} a_n$ is a series of reals such that $a_n \to 0$, $\sum_{n=1}^{\infty} a_n^+ = \infty$ and $\sum_{n=1}^{\infty} a_n^- = -\infty$ then there exists a subsequence $(n_k)_k$ such that $\sum_{k=1}^{\infty} a_{n_k}$ is conditionally convergent.

However, a similar situation is not true in the two-dimensional case.

Remark

If $\sum_{n=1}^{\infty} a_n$ is a series of reals such that $a_n \to 0$, $\sum_{n=1}^{\infty} a_n^+ = \infty$ and $\sum_{n=1}^{\infty} a_n^- = -\infty$ then there exists a subsequence $(n_k)_k$ such that $\sum_{k=1}^{\infty} a_{n_k}$ is conditionally convergent.

However, a similar situation is not true in the two-dimensional case.

That is, the following hypothesis

Hypothesis

If $(v_n)_n \subseteq \mathbb{R}^2$ is such that $v_n \to 0$ and for all $w \neq 0$ $\sum_{n=1}^{\infty} (w \circ v_n)^+ = \infty$, then there exists a subsequence $(n_k)_k$ such that $\sum_{k=1}^{\infty} (w \circ v_{n_k})^+ = \infty$ and the series $\sum_{k=1}^{\infty} v_{n_k}$ is convergent.

Remark

If $\sum_{n=1}^{\infty} a_n$ is a series of reals such that $a_n \to 0$, $\sum_{n=1}^{\infty} a_n^+ = \infty$ and $\sum_{n=1}^{\infty} a_n^- = -\infty$ then there exists a subsequence $(n_k)_k$ such that $\sum_{k=1}^{\infty} a_{n_k}$ is conditionally convergent.

However, a similar situation is not true in the two-dimensional case.

That is, the following hypothesis

Hypothesis

If $(v_n)_n \subseteq \mathbb{R}^2$ is such that $v_n \to 0$ and for all $w \neq 0$ $\sum_{n=1}^{\infty} (w \circ v_n)^+ = \infty$, then there exists a subsequence $(n_k)_k$ such that $\sum_{k=1}^{\infty} (w \circ v_{n_k})^+ = \infty$ and the series $\sum_{k=1}^{\infty} v_{n_k}$ is convergent.

is false.

Lemma

If $\sum_{n=1}^{\infty} x_n$ is a series of reals such that $x_n \to 0$, $\sum_{n=1}^{\infty} x_n^+ = \infty$ and $\sum_{n=1}^{\infty} x_n^- = -\infty$ then there exists $y_n \to 0$ such that for all $w \neq 0$ $\sum_{n=1}^{\infty} (w \circ (x_n, y_n))^+ = \infty$.

Lemma

If
$$\sum_{n=1}^{\infty} x_n$$
 is a series of reals such that $x_n \to 0$, $\sum_{n=1}^{\infty} x_n^+ = \infty$
and $\sum_{n=1}^{\infty} x_n^- = -\infty$ then there exists $y_n \to 0$ such that for all $w \neq 0$ $\sum_{n=1}^{\infty} (w \circ (x_n, y_n))^+ = \infty$.

Theorem

Let $\mathcal{I} \subseteq \mathcal{P}(\mathbb{N})$ be an ideal. The following are equivalent. (i) If $(v_n)_n \subseteq \mathbb{R}^2$, $v_n \to 0$ is such that $\forall w \neq 0 \sum_{n=1}^{\infty} (w \circ v_n)^+ = \infty$ then $\exists A \in \mathcal{I} \ \forall w \neq 0 \ \sum_{n \in A} (w \circ v_n)^+ = \infty$. (ii) \mathcal{I} cannot be extended to a summable ideal. Thank you.

æ

Э.